Abstract

To explore whether ectopic expression of human melanopsin can effectively and safely restore visual function in rd1 mice. Hematoxylin-eosin staining of retinal sections from rd1 mice was used to detect the thickness of the outer nuclear layer to determine the timing of surgery. We constructed a human melanopsin-AAV2/8 viral vector and injected it into the subretinal space of rd1 mice. The Phoenix Micron IV system was used to exclude the aborted injections, and immunohistochemistry was used to validate the ectopic expression of human melanopsin. Furthermore, visual electrophysiology and behavioral tests were used to detect visual function 30 and 45d after the injection. The structure of the retina was compared between the human melanopsin-injected group and phosphate buffer saline (PBS)-injected group. Retinas of rd1 mice lost almost all of their photoreceptors on postnatal day 28 (P28). We therefore injected the human melanopsin-adeno-associated virus (AAV) 2/8 viral vector into P30 rd1 mice. After excluding aborted injections, we used immunohistochemistry of the whole mount retina to confirm the ectopic expression of human melanopsin by co-expression of human melanopsin and YFP that was carried by a viral vector. At 30d post-injection, visual electrophysiology and the behavioral test significantly improved. However, restoration of vision disappeared 45d after human melanopsin injection. Notably, human melanopsin-injected mice did not show any structural differences in their retinas compared with PBS-injected mice. Ectopic expression of human melanopsin effectively and safely restores visual function in rd1 mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call