Abstract
Epidemiology shows a relationship between solar exposure and all types of skin cancer. Understanding the mechanisms of skin cancer requires knowledge of the photomolecular events that occur within the relevant epidermal cell types in vivo. Studies to date have focused on UVR-induced DNA lesions in keratinocytes, the majority epidermal cell population which gives rise to most skin cancers. Malignant melanoma, arising from melanocytes (5%-10% of epidermal cells), accounts for most skin cancer deaths. We report on new techniques to detect DNA photolesions in human epidermal melanocytes in situ. Previously nonexposed buttock skin of volunteers of skin types I/II was exposed to clinically relevant doses of narrow bandwidth UVB (300 nm) and UVA (320 nm, 340 nm, 360 nm) radiation. Biopsies were taken immediately afterwards and processed for routine histology. Microscope sections were prepared and double-stained with fluorescent-tagged monoclonal antibodies for thymine dimers and melanocytes. UVR dose-response curves for dimer levels within melanocyte nuclei were determined by image analysis and compared with dimer levels in adjacent basal cell keratinocytes. Our data show that UVB and UVA readily induce thymine dimers in melanocytes at levels that are comparable with those found in adjacent keratinocytes. This new technique will enable melanocyte specific studies, such as DNA repair kinetics, to be done in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.