Abstract
Robotic literature widely addresses deformable object manipulation, but few studies analyzed human manipulation accounting for different levels of deformability and task properties. We asked participants to grasp and insert rigid and deformable objects into holes with varying tolerances and depths, and we analyzed the grasping behavior, the reaching velocity profile, and completion times. Results indicated that the more deformable the object is, the nearer the grasping point is to the extremity to be inserted. For insertions in the long hole, the selection of the grasping point is a trade-off between task accuracy and the number of re-grasps required to complete the insertion. The compliance of the deformable object facilitates the alignment between the object and the hole. The reaching velocity profile when increasing deformability recalls the one observed when task accuracy and precision decrease. Identifying human strategy allows the implementation of human-inspired high-level reasoning algorithms for robotic manipulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.