Abstract

The study of river sediment is a broad and complex field. One of the very important parameters is suspended particle size (SPS), which is indispensable for understanding water–sediment dynamics. As one of the most serious soil erosion areas in the world, the Loess Plateau delivers a large amount of sediment to the Yellow River and its numerous tributaries. Studies on riverine SPS in the Loess Plateau have received extensive attention. In this study, we investigate the spatiotemporal variations of SPS in the Loess Plateau rivers and analyze the driving factors along with their relative importance. Through the analysis of SPS data from 62 hydrological stations, the results indicated the spatial distribution of SPS was similar in the 1980s and 2010s, with both coarser particles mainly distributed in the northern rivers and finer particles mainly distributed in the southern rivers. During the 1980s to the 2010s, the mean SPS on the Loess Plateau decreased from 33 μm to 20 μm, with mean reductions of 42.0%, 29.4%, 46.3%, and 36.8% in the northern, western, southwestern, and southeastern basins, respectively. The most significant changes in SPS were observed in the Kuye, Wuding and Jalu River basins in the northern region, with decreases ranging from 27 to 73 μm. In the 1980s, topography (slope) and human management, followed by precipitation, were the key factors affecting SPS variability, contributing 25.7%, 25.9% and 24.0%, respectively. In the 2010s, the explanatory power of topographic slope on SPS variability declined by 16.6%, and other natural factors no longer significantly influenced SPS variability. The results of this study can serve as a reference for integrated basin management and sustainable ecosystem development in river catchments around the world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call