Abstract
During multi-turn dialogue, with the increase in dialogue turns, the difficulty of intention recognition and the generation of the following sentence reply become more and more difficult. This paper mainly optimizes the context information extraction ability of the Seq2Seq Encoder in multi-turn dialogue modeling. We fuse the historical dialogue information and the current input statement information in the encoder to capture the context dialogue information better. Therefore, we propose a BERT-based fusion encoder ProBERT-To-GUR (PBTG) and an enhanced ELMO model 3-ELMO-Attention-GRU (3EAG). The two models mainly enhance the contextual information extraction capability of multi-turn dialogue. To verify the effectiveness of the two proposed models, we demonstrate the effectiveness of our model by combining data based on the LCCC-large multi-turn dialogue dataset and the Naturalconv multi-turn dataset. The experimental comparison results show that, in the multi-turn dialogue experiments of the open domain and fixed topic, the two Seq2Seq coding models proposed are significantly improved compared with the current state-of-the-art models. For specified topic multi-turn dialogue, the 3EAG model has the average BLEU value reaches the optimal 32.4, which achieves the best language generation effect, and the BLEU value in the actual dialogue verification experiment also surpasses 31.8. for open-domain multi-turn dialogue. The average BLEU value of the PBTG model reaches 31.8, the optimal 31.8 achieves the best language generation effect, and the BLEU value in the actual dialogue verification experiment surpasses 31.2. So, the 3EAG model is more suitable for fixed-topic multi-turn dialogues for the two tasks. The PBTG model is more muscular in open-domain multi-turn dialogue tasks; therefore, our model is significant for promoting multi-turn dialogue research.
Highlights
Published: 23 February 2022Language communication is an integral part of people’s daily life
For non-task-based dialogues, they break through the topic limitation [2]. They can provide better responses between multiple topics and even in open domains, making human–machine dialogue resemble the natural communication between people
Forward and backward three-layer GRU combined with self-attention as an encoder, For the experiments with the PBTG model, we adopted the context-encoded reprewhile the Edecoder a three-layer unidirectional
Summary
Published: 23 February 2022Language communication is an integral part of people’s daily life. With the development of artificial intelligence technology and natural language processing, the research on the human–machine dialogue has been transformed from single question–answer dialogue to multi-turn dialogue, which is more challenging. The first is a task-based dialogue, and the second is an open-domain dialogue. Task-oriented dialogue is mainly task driven, and the machine needs to understand, ask, clarify to deal with users’. For non-task-based dialogues, they break through the topic limitation [2]. They can provide better responses between multiple topics and even in open domains, making human–machine dialogue resemble the natural communication between people. The research methods of non-task-based dialogue models divide into retrieval-based methods and neural generation-based methods. The retrieval-based method mainly completes the Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.