Abstract
Human lower limb activity recognition (HLLAR) has grown in popularity over the last decade mainly because to its applications in the identification and control of neuromuscular disorders, security, robotics, and prosthetics. Surface electromyography (sEMG) sensors provide various advantages over other wearable or visual sensors for HLLAR applications, including quick response, pervasiveness, no medical monitoring, and negligible infection. Recognizing lower limb activity from sEMG signals is also challenging owing to the noise in the sEMG signal. Pre- processing of sEMG signals is extremely desirable before the classification because they allow a more consistent and precise evaluation in the above applications. This article provides a segment-by-segment overview of: (1) Techniques for eliminating artifacts from sEMG signals from the lower limb. (2) A survey of existing datasets of lower limb sEMG. (3) A concise description of the various techniques for processing and classifying sEMG data for various applications involving lower limb activity. Finally, an open discussion is presented, which may result in the identification of a variety of future research possibilities for human lower limb activity recognition. Therefore, it is possible to anticipate that the framework presented in this study can aid in the advancement of sEMG-based recognition of human lower limb activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.