Abstract

PurposeTo develop a deep unsupervised learning method with control volume (CV) mapping from patient positioning daily CT (dCT) to planning computed tomography (pCT) for precise patient positioning. MethodsWe propose an unsupervised learning framework, which maps CVs from dCT to pCT to automatically generate the couch shifts, including translation and rotation dimensions. The network inputs are dCT, pCT and CV positions in the pCT. The output is the transformation parameter of the dCT used to setup the head and neck cancer (HNC) patients. The network is trained to maximize image similarity between the CV in the pCT and the CV in the dCT. A total of 554 CT scans from 158 HNC patients were used for the evaluation of the proposed model. At different points in time, each patient had many CT scans. Couch shifts are calculated for the testing by averaging the translation and rotation from the CVs. The ground-truth of the shifts come from bone landmarks determined by an experienced radiation oncologist. ResultsThe system positioning errors of translation and rotation are less than 0.47 mm and 0.17°, respectively. The random positioning errors of translation and rotation are less than 1.13 mm and 0.29°, respectively. The proposed method enhanced the proportion of cases registered within a preset tolerance (2.0 mm/1.0°) from 66.67% to 90.91% as compared to standard registrations. ConclusionsWe proposed a deep unsupervised learning architecture for patient positioning with inclusion of CVs mapping, which weights the CVs regions differently to mitigate any potential adverse influence of image artifacts on the registration. Our experimental results show that the proposed method achieved efficient and effective HNC patient positioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.