Abstract

We have synthesized a reagent for antibody directed cell targeting composed of the monoclonal antibody (MoAb) T101 linked to the potent toxin ricin. The immunotoxin (IT) was subsequently radiolabeled by a cyclic anhydride procedure with 90Yttrium ( 90Y) to construct a radioimmunotoxin (RIT) that may have potential for cancer therapy. We evaluated the reagent for selectivity in binding and protein synthesis inhibition (PSI) assays. The RIT selectively bound antigen positive leukemia T-cell lines, with minimal binding to antigen negative control lines. The IT inhibited 87% or greater protein synthesis activity at 1 μ g ml and exhibited an IC 50 (the dose inhibiting 50% activity) of 0.18 ± 0.08 μ g ml in the presence of lactose. RIT and nonlabeled IT showed comparable degrees of PSI at 1 μ g ml and 10 μ g ml , suggesting that labeling had little overall effect on the activity of the immunoconjugate. However, indirect evidence showed that the galactose binding site of ricin was inhibited 10-fold by its exposure to 90Y. Control RIT were minimally inhibitory. IT labeled with 131Iodine ( 131I) by an iodine monochloride technique also retained its capability to selectively inhibit protein synthesis. When RIT were tested for potency in a clonogenic assay against human leukemia T-cell lines, they inhibited 3.61 logs of tumor cell growth at μ g ml ml. This did not represent an improvement over the log elimination with radiolabeled antibody alone, which showed 4.19 log elimination of tumor cells. Our observation that the 90Y-labeled RIT and labeled antibody can selectively eliminate about four logs of tumor cells in an in vitro clonogenic assay is unique. The ability of RIT to kill several logs of tumor cells in vitro renders RIT interesting anti-tumor reagents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.