Abstract

In this paper, human learning characteristics in the tracking tasks of iterative nature are investigated. Various linear and nonlinear systems are used as plant, and a human operator has to generate the proper control inputs to force these systems in tracking the desired trajectory. The learning behaviour of the human operator in modifying his control actions is studied and it is observed that the human operator can improve his performance quite efficiently despite the unavailability of any information about the system or the desired trajectories. It is concluded from the experiments that the human operator not only use the information that is directly available to him (error in this case), but also extracts some useful information (e.g. error rate) that he feels is necessary to generate a good control action. The limitation of the human performance is studied in frequency domain, and the performance of the human operator against the frequency bandwidth of error and error rate signals are highlighted. Analysis of the results revealed that a human operator gives more importance to the error rate in generating his control actions and, accordingly, it is observed that his limitation in term of performance is more sensitive to the frequency bandwidth of the error rate as compared to the error. The human operator cannot improve his performance once the frequency components of the error or error rates shift to the higher frequencies, say above 1.0 Hz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call