Abstract

Several retinal degenerations affect the human central retina, which is primarily comprised of cones and is essential for high acuity and color vision. Transplanting cone photoreceptors is a promising strategy to replace degenerated cones in this region. Although this approach has been investigated in a handful of animal models, commonly used rodent models lack a cone-rich region and larger models can be expensive and inaccessible, impeding the translation of therapies. Here, we transplanted dissociated GFP-expressing photoreceptors from retinal organoids differentiated from human induced pluripotent stem cells into the subretinal space of damaged and undamaged cone-dominant 13-lined ground squirrel eyes. Transplanted cell survival was documented via noninvasive high-resolution imaging and immunohistochemistry to confirm the presence of human donor photoreceptors for up to 4months posttransplantation. These results demonstrate the utility of a cone-dominant rodent model for advancing the clinical translation of cell replacement therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call