Abstract

The human gastric parietal cell synthesizes and secretes intrinsic factor (IF) and acid. In contrast to the cellular mechanisms of acid secretion, little is known about the mechanisms of IF secretion. To elucidate these mechanisms we obtained gastric secretions and sequential fundic biopsies from three subjects before and after pentagastrin stimulation (6 microgram/Kg s.c.). IF was localized in the biopsies using an ultrastructural immunoperoxidase technique using a well-characterized, monospecific antibody to human IF. IF output was quantified using a specific radioimmunoassay in concurrently obtained gastric secretions. Before stimulation, IF was associated with tubulovesicles scattered throughout the cytoplasm and with some in rough endoplasmic reticulum (RER). The tubulovesicles associated with IF migrated to the periphery of the secretory canaliculi within 8 min of stimulation. IF was present on secretory microvilli between 8 and 30 min when IF output in gastric juice was at its maximum. The cessation of IF secretion coincided with the depletion of IF associated with tubulovesicles. IF appeared in the perinuclear space and RER as the IF associated with tubulovesicles was secreted. These observations indicate that IF secretion depends upon membrane-associated vesicular transport and provides support for a membrane translocation-fusion hypothesis to explain the morphologic changes that occur in the parietal cell during secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.