Abstract

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a serious, costly, and persistent health problem with an estimated prevalence in Western countries around 0.5% of the general population; its socioeconomic impact is comparable with that for chronic diseases such as diabetes. Conventional treatment involves escalating drug regimens with concomitant side effects followed, in some cases, by surgical interventions, which are often multiple, mainly in Crohn's disease. The goal of finding a targeted gut-specific immunotherapy for IBD patients is therefore an important unmet need. However, to achieve this goal we first must understand how dendritic cells (DC), the most potent antigen present cells of the immune system, control the immune tolerance in the gastrointestinal tract and how their properties are altered in those patients suffering from IBD. In this review, we summarize the current available information regarding human intestinal DC subsets composition, phenotype, and function in the human gastrointestinal tract describing how, in the IBD mucosa, DC display pro-inflammatory properties, which drive disease progression. A better understanding of the mechanisms inducing DC abnormal profile in IBD may provide us with novel tools to perform tissue specific immunomodulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call