Abstract

Recently, considerable research has focused on personal assistant robots, and robots capable of rich human-like communication are expected. Among humans, non-verbal elements contribute to effective and dynamic communication. However, people use a wide range of diverse gestures, and a robot capable of expressing various human gestures has not been realized. In this study, we address human behavior modeling during interaction using a deep generative model. In the proposed method, to consider interaction motion, three factors, i.e., interaction intensity, time evolution, and time resolution, are embedded in the network structure. Subjective evaluation results suggest that the proposed method can generate high-quality human motions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.