Abstract
The maneuvering control logic that was developed to implement aerobatic maneuvers fully automatically on a miniature helicopter is described. The key component of this system is a state-machine maneuver execution logic that was inspired by an analysis of human pilot strategies. Conventional multivariable trim trajectory controllers were used before and on the exit from the maneuvers; bumpless transfer between these control modes was achieved through re-initialization of controller integrator states. Flight tests with this control logic demonstrated smooth maneuver entry, automatic recovery to a steady-state trim trajectory, and an ability to sequence maneuvers in a fully autonomous airshow-like sequence. This approach was flight tested with split-S, hammerhead, and 360-deg axial roll maneuvers, as well as a split-S-hammerhead maneuver sequence. The maneuvering control logic can be used to automate a variety of other maneuvers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.