Abstract

Climate models predict a strengthening contrast between wet and dry regions in the tropics and subtropics (30 °S–30 °N), and data from the latest model intercomparison project (CMIP6) support this expectation. Rainfall in ascending regions increases, and in descending regions decreases in climate models, reanalyses, and observational data. This strengthening contrast can be captured by tracking the rainfall change each month in the wettest and driest third of the tropics and subtropics combined. Since wet and dry regions are selected individually every month for each model ensemble member, and the observations, this analysis is largely unaffected by biases in location of precipitation features. Blended satellite and in situ data from 1988–2019 support the CMIP6-model-simulated tendency of sharpening contrasts between wet and dry regions, with rainfall in wet regions increasing substantially opposed by a slight decrease in dry regions. We detect the effect of external forcings on tropical and subtropical observed precipitation in wet and dry regions combined, and attribute this change for the first time to anthropogenic and natural forcings separately. Our results show that most of the observed change has been caused by increasing greenhouse gases. Natural forcings also contribute, following the drop in wet-region precipitation after the 1991 eruption of Mount Pinatubo, while anthropogenic aerosol effects show only weak trends in tropic-wide wet and dry regions consistent with flat global aerosol forcing over the analysis period. The observed response to external forcing is significantly larger (p > 0.95) than the multi-model mean simulated response. As expected from climate models, the observed signal strengthens further when focusing on the wet tail of spatial distributions in both models and data.

Highlights

  • Anthropogenic climate change is expected to change global-scale precipitation patterns, and many of the impacts of climate change are expected to occur through change in mean precipitation, and its extremes, heavy rainfall and drought

  • We detect the effect of external forcings on tropical and subtropical observed precipitation in wet and dry regions combined, and attribute this change for the first time to anthropogenic and natural forcings separately

  • As warming in models strengthens some of the precipitation features, these climatological and dynamical differences lead to substantial uncertainty in future rainfall changes, with climate models not agreeing on the sign of change over much of the land regions (Collins et al 2013)

Read more

Summary

22 September 2020

Human influence strengthens the contrast between tropical wet and dry regions Andrew P Schurer , Andrew P Ballinger , Andrew R Friedman and Gabriele C Hegerl.

Introduction
Precipitation changes in observations and CMIP6 simulations
Detection and attribution of observed precipitation change
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call