Abstract

Hyperplasia and phenotypic changes in fibroblasts are often observed in chronic inflammatory lesions, and yet the autonomous pathogenic contribution of these changes is uncertain. The purpose of this study was to analyze the intrinsic ability of fibroblasts from chronically inflamed synovial tissue to drive cell recruitment and angiogenesis. Fibroblasts from patients with rheumatoid arthritis (RA) or osteoarthritis (OA), as well as fibroblasts from healthy synovial tissue and healthy skin, were cultured and subcutaneously engrafted into immunodeficient mice. Cell infiltration and angiogenesis were analyzed in the grafts by immunohistochemical studies. The role of vascular endothelial growth factor (VEGF), CXCL12, and hypoxia-inducible transcription factor 1alpha (HIF-1alpha) in these processes was investigated using specific antagonists or small interfering RNA (siRNA)-mediated down-regulation of HIF-1alpha in fibroblasts. Inflammatory (OA and RA) synovial fibroblasts, compared with healthy dermal or synovial tissue fibroblasts, induced a significant enhancement in myeloid cell infiltration and angiogenesis in immunodeficient mice. These activities were associated with increased constitutive and hypoxia-induced expression of VEGF, but not CXCL12, in inflammatory fibroblasts compared with healthy fibroblasts. VEGF and CXCL12 antagonists significantly reduced myeloid cell infiltration and angiogenesis. Furthermore, targeting of HIF-1alpha expression by siRNA or of HIF-1alpha transcriptional activity by the small molecule chetomin in RA fibroblasts significantly reduced both responses. These results demonstrate that chronic synovial inflammation is associated with stable fibroblast changes that, under hypoxic conditions, are sufficient to induce inflammatory cell recruitment and angiogenesis, both of which are processes relevant to the perpetuation of chronic inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.