Abstract

Background and objectiveHuman induced pluripotent stem cells (hiPSCs) represent an ideal source for patient specific cell-based regenerative medicine; however, efficiency of hiPSC formation from reprogramming cells is low. We use several deep-learning results from time-lapse brightfield microscopy images during culture, to early detect the cells potentially reprogramming into hiPSCs and predict the colony morphology of these cells for improving efficiency of culturing a new hiPSC line. MethodsSets of time-lapse bright-field images are taken to track reprogramming process of CD34+ cells biologically identified as just beginning reprogramming. Prior the experiment, 9 classes of templates with distinct cell features clipped from microscopy images at various reprogramming stages are used to train a CNN model. The CNN is then used to classify a microscopy image as probability images of these classes. Probability images of some class are used to train a densely connected convolutional network for extracting regions of this class on a microscopy image. A U-net is trained to segment cells on the time-lapse images in early reprogramming stage during culture. The segmented cells are classified by the extracted regions to count various types of cells appearing in the early reprogramming stage for predicting the identified cells potentially forming hiPSCs. The probability images of hiPSC classes are also used to train a spatiotemporal RNN for predicting the future hiPSC colony morphology of the potential cells. ResultsExperimental results show the prediction (before 7 days after of beginning of the reprogramming) achieved 0.8 accuracy, and 66% of the identified cells under different culture conditions, predicted as forming, finally formed hiPSCs. The predicted hiPSC images and extracted colonies on the images show the prediction for future 1.5 days achieved high accuracy of hiPSC colony areas and image similarity. ConclusionsOur study proposes a method using several deep learning models to efficiently select the reprogramming cells possibly forming hiPSCs and to predict the shapes of growing hiPSC colonies. The proposed method is expected to improve the efficiency when establishing a new hiPSC line culture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.