Abstract

Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC50/Hill coefficient). Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca2+-transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca2+/late Na+ currents and Na+/Ca2+-exchanger, reduced Na+/K+-pump) are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density (fast/late Na+ and Ca2+ currents) exhibit high susceptibility to depolarization abnormalities. Repolarization abnormalities in silico predict clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers are in overall agreement across different assays: in silico AP duration changes reflect the ones observed in rabbit QT interval and hiPS-CMs Ca2+-transient, and simulated upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate that human in silico drug trials constitute a powerful methodology for prediction of clinical pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment pipelines.

Highlights

  • Cardiotoxicity is one of the main causes of withdrawal during drug development, and identifying at early stages drugs that may cause adverse effects in specific human sub-populations is still a major challenge (Stevens and Baker, 2009; Laverty et al, 2011)

  • The main findings of this simulation study are: 1. Repolarization abnormalities (RA) occurrence in populations of human models proves to be more predictive of clinical Torsade de Pointes (TdP) risk than APD prolongation and standard biomarkers obtained with the single O’Hara-Rudy dynamic (ORd) model

  • Accuracy of 96% and specificity of 92% was obtained in the classification of high risk vs. safe drugs, compared to 80 and 64%, based on APD prolongation. 100% sensitivity was achieved considering RA in the population compared to 17% with the single ORd model

Read more

Summary

Introduction

Cardiotoxicity is one of the main causes of withdrawal during drug development, and identifying at early stages drugs that may cause adverse effects in specific human sub-populations is still a major challenge (Stevens and Baker, 2009; Laverty et al, 2011). Adverse effects can potentially lead to lethal arrhythmias, and are a major cause of concern. Animal models are good for predicting QT interval prolongation (Vargas et al, 2015), and some of them, including rabbit wedge preparations, rabbit isolated hearts and the in vivo atrioventricular block dog, have shown sensitive predictions of drug-induced Torsade de Pointes (TdP) (Valentin et al, 2004; Liu et al, 2006; Sugiyama, 2008). Independent assessment against a larger number of compound (in the order of magnitude of those tested in silico in this contribution) highlight a prediction accuracy of 75% (Lawrence et al, 2008)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call