Abstract

Three mires and a small lake in the Swiss and Austrian Alps were studied palynologically at high resolution, covering the last 1,000, 400, 50 and 1,200 years, respectively. Methodological lessons include: (1) Sub-decadal resolution in upper, little-decomposed peat layers reveals recurrent marked fluctuations in both percentages and influx of regional tree-pollen types, reflecting variations in pollen production rather than in plant-population sizes. (2) Intermittent, single-spectrum pollen maxima in samples of sub-decadal resolution indicate pollen transport in clumps. This type of pollen transport may remain unrecognized in sections with lower sampling resolution, which may then lead to inappropriate interpretation in terms of plant-population sizes. (3) The detection of short-lived phases of human impact in decomposed peat requires sampling intervals as close as 0.2 cm. (4) PAR (pollen influx) may reflect vegetation dynamics more faithfully than percentages. Reliable PAR, however, is difficult to achieve in Alpine mires due to past human impact on peat growth, even when complex depth–age modelling techniques are used. Critical comparison of PAR with percentages is therefore essential. (5) Careful consideration of spatial scales in pollen signals (local–regional and subdivisions) is essential for a realistic palaeo-ecological interpretation. Results in terms of past human impact on vegetation are summarized as follows: (1) Trends in pollen types reflecting regional human action are in general agreement with earlier findings for the western Swiss Alps, allowing for regional differences. (2) All mires in the Alps investigated here and in an earlier study experienced human impact during the last millennium. The studied small lake, lying in sub-alpine pasture, records forest dynamics at a lower elevation since a.d. 800.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.