Abstract
The vif gene, one of the six auxiliary genes of human immunodeficiency virus (HIV), is essential for virus propagation in peripheral blood lymphocytes and macrophages and in certain T-cell lines. Previously, it was demonstrated that Vif inhibits the autoprocessing of truncated HIV type 1 (HIV-1) Gag-Pol polyproteins expressed in bacterial cells, as well as the protease-mediated cleavage of synthetic peptides in vitro. Peptides derived from the aa 78-98 region in the Vif molecule specifically inhibit and bind the HIV-1 protease in vitro and arrest the production of infectious viruses in HIV-1-infected cells. This study demonstrates that (i) purified recombinant Vif protein and HIV-1 but not avian sarcoma leukaemia virus protease specifically bind each other and (ii) the interaction between these two proteins takes place at the N terminus of the protease (aa 1-9) and the central part of Vif (aa 78-98). The data presented in this report suggest a model in which Vif interacts with the dimerization sites of the viral protease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.