Abstract

The role of the matrix protein (MA) of human immunodeficiency virus type 1 in intracellular transport, assembly, and extracellular release of Gag polyprotein precursor (Pr55gag) was investigated by deletion mutagenesis of the MA domain of recombinant Gag precursor expressed in baculovirus-infected cells. In addition, three carboxy-terminally truncated forms of the Gag precursor, representing mainly the MA, were constructed. One corresponded to an MA with a deletion of its last 12 residues (amb120), while the others corresponded to the entire MA with an additional sequence from the N-terminal portion of the CA (amb143 and och180). Deletions within the MA central region (residues 41 to 78) appeared to be detrimental to Gag particle assembly and budding from the plasma membrane. A slightly narrower domain, between amino acids 41 and 68, was found to be critical for soluble Gag secretion. Mutations which totally or partially deleted one or the other of the two polybasic signals altered the transport of N-myristylated Gag precursor to the plasma membrane. In coexpression with wild-type Gag precursor, a discrete trans-dominant negative effect on wild-type Gag particle assembly and release was observed with deletion mutants located in the central MA region (residues 41 to 78). A more significant negative effect was obtained with the two recombinant proteins of amb120 and och180, which redirected the Gag particle assembly pathway from the plasma membrane compartment to intracellular vesicles (amb120) and to the nuclear compartment (och180).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.