Abstract

Human T lymphoid MOLT4/8 cells were grown continuously for more than 2 years in a medium containing 3′-azido-2′,3′-dideoxythymidine (zidovudine; AZT) at a concentration of 250 μM. These cells, designated MOLT-4/8rAZT250, were used to test the cytotoxic and antiviral activity of AZT. Intracellular accumulation of AZT, expression of the multidrug resistance 1 (MDR-1) gene, thymidine kinase (TK) gene and activity of the TK enzyme in cellular extracts were measured. The results showed that both the cytotoxic and antiviral activity of AZT were significantly lower in MOLT4/8rAZT250 than in MOLT4/8 cells; concentrations required to inhibit 50% production of the p24 human immunodeficiency virus type 1 (HIV-1) antigen of two laboratory strains were at least 100-fold higher in resistant cells. The MDR-1 gene was not expressed in the resistant cells. TK mRNA expression was significantly lower in the resistant than in the sensitive cells. TK enzymatic activity for deoxythymidine phosphorylation was impaired in MOLT4/8rAZT250 cells compared to the sensitive cells. AZT was phosphorylated only in the sensitive cells whereas no phosphorylation of AZT was found in the resistant cells. We tested whether several AZT-monophosphate triesters, which bypass cellular TK, could overcome resistance to the cytotoxic and antiviral activity of AZT. The bis( t-butylSATE) phosphotriester derivative of AZT showed comparable cytotoxic and antiviral activity in sensitive and resistant cells. The results demonstrated that MOLT4/8rAZT250 cells exert resistance to the anti-HIV activity of the drug mainly owing to the lack of AZT phosphorylation and that resistance may be bypassed by using AZT-monophosphate SATE prodrugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.