Abstract

BackgroundImmunological knowledge on processed biological implants and mesh-prostheses is still mainly based on animal models, lacking information on the species-specific human immune response. We hypothesized that in contrast to human tissue even decellularized xenogenic specimens would lead to significant and tissue source dependent human immune reactions. MethodsSpecimens from processed allogenic and xenogenic pulmonary arteries, pericardium or dermis, were co-cultured with human peripheral blood mononuclear cells (PBMNC). Proliferative responses were measured in tritiated thymidine incorporation assays (n = 10). Stimulation indices (SI), calculated as counts-per-minute of co-cultured PBMNC divided by the cpm of basic cell proliferation, were compared. ResultsCompared to native porcine pulmonary artery tissue decellularization significantly reduced human PBMNC proliferation (mean SI: 48.7 vs. 18.0, p < 0.01), which was still higher compared to the human equivalent (SI: 0.7 vs. 1.7). Also the processed human dermal implant did not elicit immune response (SI: 1.5), whereas the decellularized and cross-linked porcine dermis lead to a significant human cell-proliferation (SI: 8.4, p < 0.01). Interestingly, both the processed human (SI: 15.2) and bovine pericardial patches (SI: 15.1) led to higher immune cell proliferation. ConclusionEven decellularized or cross-linked xenogenic cardiovascular and reconstructive biomaterials elicit increased human immune responses not seen in the majority of allogenic specimens tested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.