Abstract

ABSTRACTWe have previously shown that IFIT1 is primarily responsible for the antiviral action of interferon (IFN) alpha/beta against parainfluenza virus type 5 (PIV5), selectively inhibiting the translation of PIV5 mRNAs. Here we report that while PIV2, PIV5, and mumps virus (MuV) are sensitive to IFIT1, nonrubulavirus members of the paramyxoviridae such as PIV3, Sendai virus (SeV), and canine distemper virus (CDV) are resistant. The IFIT1 sensitivity of PIV5 was not rescued by coinfection with an IFIT1-resistant virus (PIV3), demonstrating that PIV3 does not specifically inhibit the antiviral activity of IFIT1 and that the inhibition of PIV5 mRNAs is regulated by cis-acting elements. We developed an in vitro translation system using purified human IFIT1 to further investigate the mechanism of action of IFIT1. While the translations of PIV2, PIV5, and MuV mRNAs were directly inhibited by IFIT1, the translations of PIV3, SeV, and CDV mRNAs were not. Using purified human mRNA-capping enzymes, we show biochemically that efficient inhibition by IFIT1 is dependent upon a 5′ guanosine nucleoside cap (which need not be N7 methylated) and that this sensitivity is partly abrogated by 2′O methylation of the cap 1 ribose. Intriguingly, PIV5 M mRNA, in contrast to NP mRNA, remained sensitive to inhibition by IFIT1 following in vitro 2′O methylation, suggesting that other structural features of mRNAs may influence their sensitivity to IFIT1. Thus, surprisingly, the viral polymerases (which have 2′-O-methyltransferase activity) of rubulaviruses do not protect these viruses from inhibition by IFIT1. Possible biological consequences of this are discussed.IMPORTANCE Paramyxoviruses cause a wide variety of diseases, and yet most of their genes encode structural proteins and proteins involved in their replication cycle. Thus, the amount of genetic information that determines the type of disease that paramyxoviruses cause is relatively small. One factor that will influence disease outcomes is how they interact with innate host cell defenses, including the interferon (IFN) system. Here we show that different paramyxoviruses interact in distinct ways with cells in a preexisting IFN-induced antiviral state. Strikingly, all the rubulaviruses tested were sensitive to the antiviral action of ISG56/IFIT1, while all the other paramyxoviruses tested were resistant. We developed novel in vitro biochemical assays to investigate the mechanism of action of IFIT1, demonstrating that the mRNAs of rubulaviruses can be directly inhibited by IFIT1 and that this is at least partially because their mRNAs are not correctly methylated.

Highlights

  • We have previously shown that IFIT1 is primarily responsible for the antiviral action of interferon (IFN) alpha/beta against parainfluenza virus type 5 (PIV5), selectively inhibiting the translation of PIV5 mRNAs

  • With regard to the Paramyxoviridae family, we have previously shown that ISG56/IFIT1, which selectively inhibits translation, is the primary effector of the IFNinduced antiviral state that limits the replication of the rubulavirus PIV5 [23]

  • 9448 jvi.asm.org shown in Fig. 1 and below, we used naive A549, A549/Npro, and A549/shIFIT1 cells; naive A549 cells can produce and respond to IFN in response to virus infection, and A549/Npro cells respond to exogenous IFN but cannot produce IFN as they constitutively express Npro from bovine viral diarrhea virus (BVDV), which targets IRF-3 for degradation [43]

Read more

Summary

Introduction

We have previously shown that IFIT1 is primarily responsible for the antiviral action of interferon (IFN) alpha/beta against parainfluenza virus type 5 (PIV5), selectively inhibiting the translation of PIV5 mRNAs. Here we report that while PIV2, PIV5, and mumps virus (MuV) are sensitive to IFIT1, nonrubulavirus members of the paramyxoviridae such as PIV3, Sendai virus (SeV), and canine distemper virus (CDV) are resistant. Viral mRNAs are capped and polyadenylated by the viral polymerase (for reviews of the molecular biology of paramyxoviruses, see references 1 and 2) Despite their limited genetic information, the majority of paramyxoviruses encode small multifunctional accessory proteins that function to aid virus multiplication and block cellular antiviral defense mechanisms; typically, these proteins can block both the production of, and the signaling response to, interferons (IFNs) (for reviews, see references 3, 4, 5, 6, and 7). IFIT1 Inhibition of Paramyxoviruses likely to be major factors in determining the type of disease that each virus causes [8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call