Abstract
Mouse embryos segregate three different lineages during preimplantation development: trophoblast, epiblast and hypoblast. These differentiation processes are associated with restricted expression of key transcription factors (Cdx2, Oct4, Nanog and Gata6). The mechanisms of segregation have been extensively studied in the mouse, but are not as well characterised in other species. In the human embryo, hypoblast differentiation has not previously been characterised. Here we demonstrate co-exclusive immunolocalisation of Nanog and Gata4 in human blastocysts, implying segregation of epiblast and hypoblast, as in rodent embryos. However, the formation of hypoblast in the human is apparently not dependent upon FGF signalling, in contrast to rodent embryos. Nonetheless, the persistence of Nanog-positive cells in embryos following treatment with FGF inhibitors is suggestive of a transient naïve pluripotent population in the human blastocyst, which may be similar to rodent epiblast and ES cells but is not sustained during conventional human ES cell derivation protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.