Abstract
Recombinant factor IX (rFIX) is increasingly used to treat patients with hemophilia B. CHO (Chinese Hamster Ovary) cells are commonly used for the production of rFIX but they have a limited capacity for introducing post-translational modifications (PTM) leading to incomplete γ-carboxylation, low phosphorylation and sulfation profiles as compared with plasma-derived preparations. Imperfect PTM might have an impact on the activity of Factor IX molecule. Several studies in animal models as well as clinical trials have previously reported a lower recovery of rFIX compared to plasma-derived FIX concentrates.In the present study, we aimed to produce a rFIX having a profile of PTM similar to plasma-derived FIX, using human hepatoma cell line HuH-7. We showed that rFIX produced by HuH-7 cells followed the classical intracellular pathway before secretion. In addition, improved PTM were associated with fully active molecule compared to plasma-derived and recombinant control FIX molecules. Secreted rFIX presented as a single band at the correct molecular weight. HuH-7 cellular clones were obtained and they secreted a biologically active human FIX. FIX was then purified for a detailed evaluation of PTM. Glycosylation and sialylation profiles were similar to plasma-derived and rFIX and mass spectrometry analysis demonstrated the presence of phosphorylated and sulfated forms of rFIX.These data strongly support that HuH-7 cells may represent an effective cellular system for production of rFIX exhibiting PTM similar to plasma-derived FIX.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.