Abstract

microRNAs (miRs) are 18–25 nucleotide non-coding RNAs that regulate gene expression in several physiological and pathological conditions. To gather more knowledge on microRNAs in human hepatocellular carcinoma (HCC) we generated a small RNA library in the human HCC cell line HA22T/VGH by cloning and sequencing the cDNA obtained following the size selection of 18–24 nucleotide RNAs. We determined the expression levels of the most frequently cloned microRNAs by qPCR in HCC tissues and in their peritumoral counterparts from biopsy specimens of 41 HCC patients. The most frequently cloned miRs were miR-24, miR-27a and miR-21, and their expression levels in human HCC tissues indicate that these miRs were dysregulated in HCC. We showed that miR-24 and miR-27a were significantly downregulated in HCCs from cirrhotic liver tissues in comparison to those from non-cirrhotic liver tissues. In cirrhotic HCCs the downregulation of miR-24 was correlated with poorer prognosis in patients with HBV and HCV virus infections. miR-21 was generally upregulated in HCC tissues versus the corresponding peritu-moral tissues, particularly in non-cirrhotic HCC. Furthermore, by sequence alignment we identified the human miR orthologue of Mus musculus miR-1199 not yet annotated. Our results outline the differential expression of miRs in cirrhotic and non-cirrhotic HCCs, thereby contributing to advances in the discovery and validation of novel molecular biomarkers of HCC progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.