Abstract
Hair pigmentation is one of the most conspicuous phenotypes in humans. Melanocytes produce two distinct types of melanin pigment: brown to black, indolic eumelanin and yellow to reddish brown, sulfur-containing pheomelanin. Biochemically, the precursor tyrosine and the key enzyme tyrosinase and the tyrosinase-related proteins are involved in eumelanogenesis, while only the additional presence of cysteine is necessary for pheomelanogenesis. Other important proteins involved in melanogenesis include P protein, MATP protein, α-MSH, agouti signaling protein (ASIP), MC1R (the receptor for MSH and ASIP), and SLC7A11, a cystine transporter. Many studies have examined the effects of loss-of-function mutations of those proteins on mouse coat color pigmentation. In contrast, much less is known regarding the effects of mutations of the corresponding proteins on human hair pigmentation except for MC1R polymorphisms that lead to pheomelanogenesis. This perspective will discuss what we have/have not learned from mouse coat color pigmentation, with special emphasis on the significant roles of pH and the level of cysteine in melanosomes in controlling melanogenesis. Based on these data, a hypothesis is proposed to explain the diversity of human hair pigmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.