Abstract

Background Human growth hormone (hGH) is a complex mixture of molecular isoforms. Gaps in our knowledge exist regarding the structures and biological significances of the uncharacterized hGH molecular variants. Mercaptoethanol-resistant 45-kDa human growth hormone (MER-45 kDa hGH) is an extraordinarily stable disulfide-linked hGH homodimer whose biological significance is unknown. Objectives To elucidate the pharmacokinetic abilities of dimeric MER-45-kDa hGH to bind to GH and prolactin (PRL) receptors and to elucidate its abilities to stimulate cell proliferation in lactogen-induced and somatogen-induced in vitro cell proliferation bioassays. Design The binding of MER-45-kDa hGH to GH and PRL receptors was tested in radioreceptor assays (RRAs). Competitive displacements of [ 125I]-bovine GH from bovine liver membranes, [ 125I]-ovine PRL from lactating rabbit mammary gland membranes and [ 125I]-hGH from human IM-9 lymphocytes by unlabelled GHs, PRLs or dimeric MER-45-kDa hGH were evaluated. The abilities of dimeric MER-45-kDa hGH to stimulate proliferation of lactogen-responsive Nb2 lymphoma cells and to stimulate proliferation of somatogen-responsive T47-D human breast cancer cells were assessed by incubation of cells with GHs or PRLs and subsequently measuring growth using the MTS cell proliferation assay. Results Dimeric MER-45-kDa hGH, compared to monomeric hGH, had reduced binding affinities to both GH and prolactin receptors. In a bovine liver GH radioreceptor assay its ED 50 (197.5 pM) was 40.8% that of monomeric hGH. In a human IM-9 lymphocyte hGH RRA its ED 50 (2.96 nM) was 26.2% that of monomeric hGH. In a lactating rabbit mammary gland prolactin RRA its ED 50 (3.56 nM) was 16.8% that of a monomeric hGH. Dimeric MER-45-kDa hGH, compared to monomeric hGH, had a diminished capacity to stimulate proliferation of cells in vitro. In a dose–response relationship assessing proliferation of Nb2 lymphoma cells its ED 50 (191 pM) was 18.0% that of monomeric hGH. While monomeric hGH stimulated a 2.2-fold proliferation of T47-D human breast cancer cells above vehicle control, dimeric MER-45-kDa hGH was unable to stimulate the cells to proliferate and slightly inhibited their proliferation to 77.6% that of control. Conclusions The topological arrangement of monomeric hGHs to form an unusually stable disulfide-linked dimer markedly diminishes hGH's binding affinities to both GH and PRL receptors and also drastically attenuates its ability to stimulate proliferation of cells in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call