Abstract

The aim of the work presented here was to design and synthesize potent human glucagon receptor antagonists with improved pharmacokinetic (PK) properties for development of pharmaceuticals for the treatment of type 2 diabetes. We describe the preparation of compounds with cyclic cores (5-aminothiazoles), their binding affinities for the human glucagon and GIP receptors, as well as affinities for rat, mouse, pig, dog, and monkey glucagon receptors. Generally, the compounds had slightly less glucagon receptor affinity compared to compounds of the previous series, but this was compensated for by much improved PK profiles in both rats and dogs with high oral bioavailabilities and sustained high plasma exposures. The compounds generally showed species selectivity for glucagon receptor binding with poor affinities for the rat, mouse, rabbit, and pig receptors. However, dog and monkey glucagon receptor affinities seem to reflect the human situation. One compound of this series, 18, was tested intravenously in an anesthetized glucagon-challenged monkey model of hyperglucagonaemia and hyperglycaemia and was shown dose-dependently to decrease glycaemia. Further, high plasma exposures and a long plasma half-life (5.2 h) were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.