Abstract

ObjectivesThe aim of this study was to analyze the features of an oxidized titanium implant surface and to evaluate its effects on the response of human gingival fibroblasts. Methods10mm×10mm×1mm turned (control) and oxidized (test) titanium samples (P.H.I. s.r.l., Italy) were examined by scanning electron microscopy and atomic force microscopy and characterized by height, spatial and hybrid roughness parameters. Primary cultures of human gingival fibroblasts were seeded on titanium samples, and cell morphology, adhesion, proliferation and extracellular matrix deposition, in terms of type I collagen synthesis, were evaluated. ResultsControl and test surfaces appeared considerably different at the microscopic analyses: turned samples were grooved, whereas oxidized surfaces showed a more complex micro- and nano-scaled texture, as evidenced by roughness parameters. Cell adhesion and proliferation rate, as well as collagen synthesis, were greater on oxidized vs turned surfaces. ConclusionsAlthough both control and test samples were in the range of average roughness proper of smooth surfaces, they exhibited significantly different topographic properties in terms of height and, mostly, hybrid parameters. Furthermore, oxidized surfaces enhanced human gingival fibroblast adhesion, proliferation and extracellular matrix deposition, and this could be due to the different structure at micro- and nano-scale levels. Clinical significanceOxidized nanostructured titanium surfaces could have a significant clinical utilization in virtue of their affinity for soft tissue attachment at the implant neck and/or at the transmucosal portion of the prosthetic abutment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.