Abstract

Monodisperse-porous silica microspheres 5.1μm in size with a bimodal pore-size distribution (including both mesoporous and macroporous compartments) were obtained using a newly developed staged-shape templated hydrolysis and condensation protocol. Synthesized silica microspheres and monodisperse-porous polymer-based microspheres with different functionalities, synthesized by staged-shape template polymerization, were comparatively tested as sorbents for human genomic DNA (hgDNA) isolation in a microfluidic system. Microcolumns with a permeability range of 1.8–8.5×10−13m2 were fabricated by the slurry-packing of silica- or polymer-based microspheres. The monodisperse-porous silica microspheres showed the best performance in hgDNA isolation in an aqueous buffer medium; >2500ng of hgDNA was recovered with an isolation yield of about 50%, using an hgDNA feed concentration of 100ng/μL. Monodisperse-porous silica microspheres were also evaluated as a sorbent for genomic DNA isolation from human whole blood in the microfluidic system; 14ng of hgDNA was obtained from 10μL of whole blood lysate with an isolation yield of 64%. Based on these results, we conclude that monodisperse-porous silica microspheres with a bimodal pore size distribution are a promising sorbent for the isolation of hgDNA in larger amounts and with higher yields compared to the sorbents previously tried in similar microfluidic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call