Abstract

Type 2 diabetes is a global epidemic with major effects on healthcare expenditure and quality of life. Currently available treatments are inadequate for the prevention of comorbidities, yet progress towards new therapies remains slow. A major barrier is the insufficiency of traditional preclinical models for predicting drug efficacy and safety. Human genetics offers a complementary model to assess causal mechanisms for target validation. Genetic perturbations are ‘experiments of nature’ that provide a uniquely relevant window into the long-term effects of modulating specific targets. Here, we show that genetic discoveries over the past decades have accurately predicted (now known) therapeutic mechanisms for type 2 diabetes. These findings highlight the potential for use of human genetic variation for prospective target validation, and establish a framework for future applications. Studies into rare, monogenic forms of diabetes have also provided proof-of-principle for precision medicine, and the applicability of this paradigm to complex disease is discussed. Finally, we highlight some of the limitations that are relevant to the use of genome-wide association studies (GWAS) in the search for new therapies for diabetes. A key outstanding challenge is the translation of GWAS signals into disease biology and we outline possible solutions for tackling this experimental bottleneck.

Highlights

  • Long-term complications of type 2 diabetes and its related disorders present a major, growing socioeconomic burden to society [1]

  • zinc transporter 8 (ZnT8) modulation no validated drug targets have emerged from type 2 diabetes genomewide association studies (GWAS) to date, recently identified coding variants have highlighted plausible candidates

  • As the variants have no pleiotropic effects, the results indicate a causal role of reduced LDLcholesterol in type 2 diabetes susceptibility

Read more

Summary

Introduction

Long-term complications of type 2 diabetes and its related disorders present a major, growing socioeconomic burden to society [1]. Around 60 years later, genetic studies in humans identified a type 2 diabetes association signal that overlaps two genes, KCNJ11 and ABCC8, which encode subunits of the KATP (OR 1.1–1.2) [27,28,29].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call