Abstract

In this letter, we address the problem of providing human-assisted quadrotor navigation using a set of eye tracking glasses. The advent of these devices (i.e., eye tracking glasses, virtual reality tools, etc.) provides the opportunity to create new, noninvasive forms of interaction between humans and robots. We show how a set of glasses equipped with gaze tracker, a camera, and an inertial measurement unit (IMU) can be used to estimate the relative position of the human with respect to a quadrotor, and decouple the gaze direction from the head orientation, which allows the human to spatially task (i.e., send new 3-D navigation waypoints to) the robot in an uninstrumented environment. We decouple the gaze direction from head motion by tracking the human's head orientation using a combination of camera and IMU data. In order to detect the flying robot, we train and use a deep neural network. We experimentally evaluate the proposed approach, and show that our pipeline has the potential to enable gaze-driven autonomy for spatial tasking. The proposed approach can be employed in multiple scenarios including inspection and first response, as well as by people with disabilities that affect their mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.