Abstract
The plant hormone salicylic acid (SA) controls several physiological processes and is a key regulator of multiple levels of plant immunity. To decipher the mechanisms through which SA’s multiple physiological effects are mediated, particularly in immunity, two high-throughput screens were developed to identify SA-binding proteins (SABPs). Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) from plants (Arabidopsis thaliana) was identified in these screens. Similar screens and subsequent analyses using SA analogs, in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology, established that human GAPDH (HsGAPDH) also binds SA. In addition to its central role in glycolysis, HsGAPDH participates in several pathological processes, including viral replication and neuronal cell death. The anti-Parkinson’s drug deprenyl has been shown to suppress nuclear translocation of HsGAPDH, an early step in cell death and the resulting cell death induced by the DNA alkylating agent N-methyl-N’-nitro-N-nitrosoguanidine. Here, we demonstrate that SA, which is the primary metabolite of aspirin (acetyl SA) and is likely responsible for many of its pharmacological effects, also suppresses nuclear translocation of HsGAPDH and cell death. Analysis of two synthetic SA derivatives and two classes of compounds from the Chinese medicinal herb Glycyrrhiza foetida (licorice), glycyrrhizin and the SA-derivatives amorfrutins, revealed that they not only appear to bind HsGAPDH more tightly than SA, but also exhibit a greater ability to suppress translocation of HsGAPDH to the nucleus and cell death.
Highlights
Through most of human history, medicine has been based on plant remedies
The affinity column was competitively eluted with a high concentration of Salicylic acid (SA) and the released proteins were identified by mass spectroscopy
In a parallel study of High Mobility Group Box1 (HMGB1), which is another novel target of SA in humans [25], we identified the amorfrutins from the Chinese medicinal herb licorice (Glycyrrhiza foetida) as promising natural SA derivatives
Summary
Through most of human history, medicine has been based on plant remedies. Plant/herbbased medicine, sometimes referred to as traditional medicine (TM), still is the primary form of treatment for billions of people worldwide, in developing countries, and is regaining favor in Western societies. Even in "modern" medicine, approximately half of the pharmaceuticals developed over the past 20 years and approved by the US FDA are natural products (mainly plant derived), or are synthetic derivatives of, or have at their core a prototype molecule derived from, natural products [1]. Salicylic acid (SA) and its derivatives, collectively termed salicylates, are a prime example. SA and its derivatives have been used for millennia to reduce pain, fever, and inflammation. Aspirin is used to reduce the risk of heart attack, stroke, and certain cancers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.