Abstract

Gait recognition is an evolving technology in the biometric domain; it aims to recognize people through an analysis of their walking pattern. One of the significant challenges of the appearance-based gait recognition system is to augment its performance by using a distinctive low-dimensional feature vector. Therefore, this study proposes the low-dimensional features that are capable of effectively capturing the spatial, gradient, and texture information in this context. These features are obtained by the computation of histogram of oriented gradients, followed by sum variance Haralick texture descriptor from nine cells of gait gradient magnitude image. Further, the performance of the proposed method is validated on five widely used gait databases. They include CASIA A gait database, CASIA B gait database, OU-ISIR D gait database, CMU MoBo database, and KTH video database. The experimental results demonstrated that the proposed approach could choose significant discriminatory features for individual identification and consequently, outperform certain state-of-the-art methods in terms of recognition performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.