Abstract

This work deals with the complex task of unscrewing a bottle cap with a dexterous anthropomorphic hand. To that end, human motion profiles of nine test subjects were recorded using CyberGlove II and the data were analyzed for unscrewing a bottle cap. Results showed that the periodic motions exhibited by the finger joints shared a common frequency for each subject, but differed in amplitude and phase. From the gathered data, a set of sinusoidal trajectories were developed to approximate this motion for a robotic hand. Because the joint trajectories share the same frequency, a single sinusoidal input can be used in the path planning of the robot to achieve this task. A reference joint is given a sinusoidal input, and the remaining joints are scaled in phase and amplitude with respect to this reference joint. This significantly reduces the computational cost and complexity of the task. Simulation results show that the developed sinusoidal trajectories show a close correlation with the motion profiles seen from human experiments. Using the developed sine trajectories, the robotic hand successfully unscrewed the bottle cap in all five conducted trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.