Abstract

It is not known whether the diameter of peripheral conduit arteries may impose a limitation on muscle blood flow and oxygen uptake at peak effort in humans, and it is not clear whether these arteries are dimensioned in relation to the tissue volume they supply or, rather, to the type and intensity of muscular activity. In this study, eight humans, with a peak pulmonary oxygen uptake of 3.90 +/- 0.31 (range 2.29-5.03) l/min during ergometer cycle exercise, performed one-legged dynamic knee extensor exercise up to peak effort at 68 +/- 7 W (range 55-100 W). Peak values for knee extensor blood flow (thermodilution) and oxygen uptake of 6.06 +/- 0.74 (range 4.75-9.52) l/min and 874 +/- 124 (range 590-1,521) ml/min, respectively, were achieved. Pulmonary oxygen uptake reached a peak of 1.72 +/- 0.19 (range 1.54-2.33) l/min. Diameters of common and profunda femoral arteries determined by ultrasound Doppler were 10.6 +/- 0.4 (range 8.2-12.7) and 6.0 +/- 0.4 (range 4.5-8.0) mm, respectively. Thigh and quadriceps muscle volume measured by computer tomography were 10.06 +/- 0.66 (range 6.18-10.95) and 2.36 +/- 0.19 (range 1.31-3.27) liters, respectively. The common femoral artery diameter, but not that of the profunda branch, correlated with the thigh volume and quadriceps muscle mass. There were no relationships between either of the diameters and the absolute or muscle mass-related resting and peak values of blood flow and oxygen uptake, peak pulmonary oxygen uptake, or peak power output during knee extensor exercise. However, common femoral artery diameter correlated to peak pulmonary oxygen uptake during ergometer cycle exercise. In conclusion, common and profunda femoral artery diameters are sufficient to ensure delivery to the quadriceps muscle. However, the common branch may impose a limitation during ergometer cycle exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.