Abstract

The metabolism of soyasaponin I (3-O-[alpha-L-rhamnopyranosyl-beta-D-galactopyranosyl-beta-D-glucuronopyranosyl]olean-12-ene-3beta,22beta,24-triol) by human fecal microorganisms was investigated. Fresh feces were collected from 15 healthy women and incubated anaerobically with 10 mmol soyasaponin I/g feces at 37 degrees C for 48 h. The disappearance of soyasaponin I in this in vitro fermentation system displayed apparent first-order rate loss kinetics. Two distinct soyasaponin I degradation phenotypes were observed among the subjects: rapid soyasaponin degraders with a rate constant k = 0.24 +/- 0.04 h(-)(1) and slow degraders with a k = 0.07 +/- 0.02 h(-)(1). There were no significant differences in the body mass index, fecal moisture, gut transit time, and soy consumption frequency between the two soyasaponin degradation phenotypes. Two primary gut microbial metabolites of soyasaponin I were identified as soyasaponin III (3-O-[beta-D-galactopyranosyl-beta-D-glucuronopyranosyl]olean-12-ene-3beta,22beta,24-triol) and soyasapogenol B (olean-12-ene-3beta,22beta,24-triol) by NMR and electrospray ionized mass spectroscopy. Soyasaponin III appeared within the first 24 h and disappeared by 48 h. Soyasapogenol B seemed to be the final metabolic product during the 48 h anaerobic incubation. These results indicate that dietary soyasaponins can be metabolized by human gut microorganisms. The sugar moieties of soyasaponins seem to be hydrolyzed sequentially to yield smaller and more hydrophobic metabolites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call