Abstract

Fascioliasis is a snail-borne zoonotic disease with impact on the development of human subjects and communities. It is caused by two liver-infecting fasciolid trematode species, the globally-distributed Fasciola hepatica and the Africa/Asia-restricted but more pathogenic, larger F. gigantica. Fasciola gigantica is the cause of endemicity in livestock throughout the warm lowlands from Pakistan to southeastern Asia since old times. Human fascioliasis is emerging in this region at present, with an increase of patient reports. Complete sequences of rDNA ITS-1 and ITS-2 spacers and mtDNA nad1 and cox1 genes were obtained from fasciolid eggs found in the endoscopic bile aspirate from a patient of Arunachal Pradesh, northeastern India. Egg measurements, pronounced ITS heterozygosity, and pure F. gigantica mtDNA haplotypes demonstrate an infection by a recent F. gigantica-like hybrid. Sequence identities and similarities with the same DNA markers found in livestock from Bangladesh prove the human-infecting fasciolid to present identical ITSs and nad1 haplotypes and only one silent transversion in cox1 when compared to a widely-spread combined haplotype in animals. In northeastern India and Bangladesh, human fascioliasis emergence appears linked to increasing livestock prevalences due to: ruminant importation from other countries because of the increasing demand of rapidly growing human populations; numerous livestock movements, including transborder corridors, due to the uncontrolled small-scale household farming practices; and man-made introduction of F. hepatica with imported livestock into an area originally endemic for F. gigantica leading to frequent hybridization. Sequences, phylogenetic trees, and networks indicate that the origins of intermediate/hybrid fasciolids and factors underlying human infection risk differ in eastern and western South Asia. The emergence scenario in southern China and Vietnam resembles the aforementioned of northeastern India and Bangladesh, whereas in Pakistan it is linked to increasing monsoon rainfall within climate change combined with an impact of an extensive irrigation system. Past human-guided movements of pack animals along the western Grand Trunk Road and the eastern Tea-Horse Road explain the F. gigantica mtDNA results obtained. Physicians should be aware about these emerging scenarios, clinical pictures, diagnostic techniques and treatment. Government authorities must appropriately warn health professionals, ensure drug availability and improve livestock control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call