Abstract

Interactive machine learning (ML) adds a human-in-the-loop aspect to a ML system. Even though the input from human users to the system is a central part of the concept, the uncertainty caused by the human feedback is often not considered in interactive ML. The assumption that the human user is expected to always provide correct feedback, typically does not hold in real-world scenarios. This is especially important for when the cognitive workload of the human is high, for instance in online learning from streaming data where there are time constraints for providing the feedback. We present experiments of interactive online ML with human participants, and compare the results to simulated experiments where humans are always correct. We found combining the two interactive learning paradigms, active learning and machine teaching, resulted in better performance compared to machine teaching alone. The results also showed an increased discrepancy between the experiments with human participants and the simulated experiments when the cognitive workload was increased. The findings suggest the importance of taking uncertainty caused by human factors into consideration in interactive ML, especially in situations which requires a high cognitive workload for the human.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.