Abstract

Today, crowdsourcing is used to "taskify" any job ranging from simple receipt transcription to collaborative editing, fan-subbing, citizen science, and citizen journalism. The crowd is typically volatile, its arrival and departure asynchronous, and its levels of attention and accuracy diverse. Tasks vary in complexity and may necessitate the participation of workers with varying degrees of expertise. Sometimes, workers need to collaborate explicitly and build on each other's contributions to complete a single task. For example, in disaster reporting, CrowdMap allows geographically closed people with diverse and complementary skills, to work together to report details about the course of a typhoon or the aftermath of an earthquake. This uber-ization of human labor requires the understanding of workers motivation in completing a task, their ability to work together in collaborative tasks, as well as, helping workers find relevant tasks. For over 40 years, organization studies have thoroughly examined human factors that affect workers in physical workplaces. More recently, computer scientists have developed algorithms that verify and leverage those findings in a virtual marketplace, in this case, a crowdsourcing platform. The goal of this tutorial is to review those two areas and discuss how their combination may improve workers' experience, task throughput and outcome quality for both micro-tasks and collaborative tasks. We will start with a coverage of motivation theory, team formation, and learning worker profiles. We will then address open research questions that result from this review.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.