Abstract

BackgroundDeficient extinction learning and threat adaptation in the ventromedial prefrontal cortex (vmPFC)-amygdala circuitry strongly impede the efficacy of exposure-based interventions in anxiety disorders. Recent animal models suggest a regulatory role of the renin-angiotensin system in both these processes. Against this background, the present randomized placebo-controlled pharmacologic functional magnetic resonance imaging experiment aimed at determining the extinction enhancing potential of the angiotensin II type 1 receptor antagonist losartan (LT) in humans. MethodsSeventy healthy male subjects underwent Pavlovian threat conditioning and received single-dose LT (50 mg) or placebo administration before extinction. Psychophysiological threat reactivity (skin conductance response) and neural activity during extinction served as primary outcomes. Psychophysiological interaction, voxelwise mediation, and novel multivariate pattern classification analyses were used to determine the underlying neural mechanisms. ResultsLT significantly accelerated the decline of the psychophysiological threat response during within-session extinction learning. On the neural level, the acceleration was accompanied and critically mediated by threat-specific enhancement of vmPFC activation. Furthermore, LT enhanced vmPFC-basolateral amygdala coupling and attenuated the neural threat expression, particularly in the vmPFC, during early extinction. ConclusionsOverall the results indicate that LT facilitates within-session threat memory extinction by augmenting threat-specific encoding in the vmPFC and its regulatory control over the amygdala. The findings document a pivotal role of angiotensin regulation of extinction learning in humans and suggest that adjunct LT administration has the potential to facilitate the efficacy of exposure-based interventions in anxiety disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.