Abstract

The zoonotic malaria parasite, Plasmodium knowlesi, is now a substantial public health problem in Malaysian Borneo. Current understanding of P. knowlesi vector bionomics and ecology in Sabah comes from a few studies near the epicentre of human cases in one district, Kudat. These have incriminated Anopheles balabacensis as the primary vector, and suggest that human exposure to vector biting is peri-domestic as well as in forest environments. To address the limited understanding of vector ecology and human exposure risk outside of Kudat, we performed wider scale surveillance across four districts in Sabah with confirmed transmission to investigate spatial heterogeneity in vector abundance, diversity and infection rate. Entomological surveillance was carried out six months after a cross-sectional survey of P. knowlesi prevalence in humans throughout the study area; providing an opportunity to investigate associations between entomological indicators and infection. Human-landing catches were performed in peri-domestic, farm and forest sites in 11 villages (3-4 per district) and paired with estimates of human P. knowlesi exposure based on sero-prevalence. Anopheles balabacensis was present in all districts but only 6/11 villages. The mean density of An. balabacensis was relatively low, but significantly higher in farm (0.094/night) and forest (0.082/night) than peri-domestic areas (0.007/night). Only one An. balabacensis (n = 32) was infected with P. knowlesi. Plasmodium knowlesi sero-positivity in people was not associated with An. balabacensis density at the village-level however post hoc analyses indicated the study had limited power to detect a statistical association due low vector density. Wider scale sampling revealed substantial heterogeneity in vector density and distribution between villages and districts. Vector-habitat associations predicted from this larger-scale surveillance differed from those inferred from smaller-scale studies in Kudat; highlighting the importance of local ecological context. Findings highlight potential trade-offs between maximizing temporal versus spatial breadth when designing entomological surveillance; and provide baseline entomological and epidemiological data to inform future studies of entomological risk factors for human P. knowlesi infection.

Highlights

  • IntroductionHuman infection with the simian malaria parasite, Plasmodium knowlesi is widespread across South East Asia with a large focus of transmission occurring in Malaysian Borneo

  • Most knowledge about the ecology and behaviour of mosquitoes transmitting P. knowlesi in Borneo comes from a limited number of sites near the major epicentre of human infection in Kudat District, Sabah

  • Working in 11 villages across 4 districts in Sabah, we found low densities of the P. knowlesi vector, An. balabacensis

Read more

Summary

Introduction

Human infection with the simian malaria parasite, Plasmodium knowlesi is widespread across South East Asia with a large focus of transmission occurring in Malaysian Borneo. Anopheles mosquitoes in the Leucosphyrus complex are responsible for transmitting P. knowlesi [1], and the species An. balabacensis has been confirmed as the primary vector in the largest hotspot of human infection in the Kudat district of Sabah, Malaysian Borneo. Identification of vector species responsible for P. knowlesi transmission and habitats associated with human exposure is a vital first step for planning control measures. Human P. knowlesi cases have been reported throughout the state of Sabah [5], detailed study of vector ecology has been mostly restricted to a 2x3 km intensive study site in Kudat (Fig 1) and two sites on the neighbouring Banggi island [2].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call