Abstract
The far-UVC (222 nm) system has emerged as a solution for controlling airborne transmission, yet its effect on indoor air quality, particularly concerning positioning, remains understudied. In this study, we examined the impact of far-UVC lamp position on the disinfection and secondary contaminant formation in a small office. We employed a three-dimensional computational fluid dynamics (CFD) model to integrate UV intensity fields formed by different lamp positions (ceiling-mounted, wall-mounted, and stand-alone types) along with the air quality model. Our findings reveal that the ceiling-mounted type reduces human exposure to airborne pathogens by up to 80% compared to scenarios without far-UVC. For all the lamp positions, O3 concentration in the breathing zone increases by 4–6 ppb after one hour of operation. However, it should be noted that a high concentration zone (> 25 ppb) forms near the lamp when it is turned on. Moreover, ventilation plays a crucial role in determining human exposure to airborne pathogens and secondary contaminants. Increasing the ventilation rate from 0.7 h−1 to 4 h−1 reduces airborne pathogen and secondary contaminant concentrations by up to 90%. However, caution is warranted as higher ventilation rates can lead to elevated O3 indoors, especially under conditions of high outdoor O3 concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.