Abstract

Squamous cell carcinomas have recently been shown to contain increased numbers of epidermal growth factor (EGF) receptors. Since EGF has an important role in epithelial growth and differentiation, it is possible that modulation of its receptor may have an important role in neoplasia. In an attempt to further explore the relationship of EGF receptor expression to malignant transformation, we examined 14 squamous cell carcinoma cell lines of the esophagus for the number and affinity of EGF receptors. Seven cell lines were newly isolated by this laboratory and recently characterized. The seven additional cell lines were obtained from Japan (4 cell lines) and South Africa (3 cell lines). Surprisingly, we found that esophageal carcinomas contained lowered quantities of surface EGF receptors (2- to 100-fold) and that the affinity of the EGF receptor was increased (6- to 100-fold) when compared to normal esophageal epithelial cells. Moreover, the biologic response of esophageal carcinoma cells to EGF differed markedly from that of other squamous cell tumor cells exhibiting elevated numbers of receptors, such as A431 and SCC-15. Human esophageal carcinoma cells were maximally stimulated by the addition of 5 ng/ml of EGF, similar to normal esophageal keratinocytes, but in contrast to normal cells were not inhibited by the higher concentrations tested (up to 40 ng/ml). On the other hand, addition of any EGF to the medium (beyond that normally present in serum) was found to dramatically inhibit the growth of A431 and SCC-15 cells. Our findings indicate that squamous cell neoplasia is not dependent upon increased numbers of cell surface EGF receptors, that EGF receptor number may have a determinant role in EGF cell toxicity, and that the stimulatory response of cells to EGF may reflect a complex function of EGF receptor number, affinity, and occupancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.