Abstract

ABSTRACT Workers in the iron casting industries are exposed to various chemicals, especially graphite in furnace process. This study aims to investigate the toxic effects of graphite particles on human lung cells. Particle characteristics were confirmed by electron microscope and light scattering. Cell viability and oxidative stress markers were measured. The expression of oxidative repair genes, namely OGG1, MTH1, and ITPA, was evaluated. The average particle size was determined to be 172.1 ± 11.96 nm. The median inhibition concentration (IC50) of graphite particles was 46.75 µg/mL. Notably, 25 and 50 µg/mL concentrations resulted in significant GSH depletion and MDA production. The high concentration of graphite particles (200 µg/mL) led to OGG1 suppression and increased MTH1 expression. Based on these findings, graphite exposure may induce toxicity in human lung cells by increasing oxidative stress. Further research is necessary to fully understand the mechanisms underlying graphite toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call