Abstract

The AFM combined nanoindentation was performed to observe the ultrastructure of enamel rod from various section plans and positions while probing their mechanical and tribological properties of the area. The nanohardness and the elastic modulus of the head region of the enamel rods are significantly higher than that of the tail region and the axial-sectional plane. Both nanohardness and elastic modulus gradually decrease from enamel surface toward dentino-enamel junction. Such a variation correlates well with the decreasing trend of calcium composition from our element analysis. The friction coefficient and nanowear of the enamel showed an inversed trend to the hardness with respect to their relative topological position in the long axis of enamel rod toward DEJ. The relationship between the nanowear depth and the distance from the outer enamel surface to DEJ presented exponential function. The results presented clarify the basic nanomechanical and nanotribological properties of human enamel rods and provide a useful reference for the future development of dental restorative materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.