Abstract

Biological brain signals may be used to identify emotions in a variety of ways, with accuracy depended on the methods used for signal processing, feature extraction, feature selection, and classification. The major goal of the current work was to use an adaptive channel selection and classification strategy to improve the effectiveness of emotion detection utilizing brain signals. Using different features picked by feature fusion approaches, the accuracy of existing classification models' emotion detection is assessed. Statistical modeling is used to determine time-domain and frequency-domain properties. Multiclass classification accuracy is examined using Neural Networks (NNs), Lasso regression, k-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Random Forest (RF). After performing hyperparameter tuning, a remarkable increase in accuracy is achieved using Lasso regression, while RF performed well for all the feature sets. 78.02% and 76.77% accuracy were achieved for a small and noisy 24 feature dataset by Lasso regression and RF respectively whereas 76.54% accuracy is achieved by Lasso regression with the backward elimination wrapper method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call