Abstract

Pluripotential embryonic stem (ES) cells have been derived very efficiently from spare human embryos produced by IVF and grown in culture to the nascent blastocyst stage. The inner cell mass (ICM) is isolated by immunosurgery and grown on selected embryonic fibroblast monolayer cultures. ICM cells lose their memory for axis during formation of ES cell colonies and are then unable to integrate tissue formation with a body plan. ES cells form teratomas in vivo with cells and tissues representative of the three major embryonic lineages (ectoderm, mesoderm, endoderm). The ES cells are continuously renewable and can be directed to differentiate into early progenitors of neural stem cells (Noggin cells) and from there into mature neurons and glia (astrocytes and oligodendrocytes). The neural stem cells formed from human ES cells repopulate the brains of newborn mice when injected into the lateral cerebral ventricles, forming astrocytes dominantly in the parenchyma. The human neural cells can be observed migrating from the subventricular areas along the rostral migratory stream. Human neurons can be found in the olfactory bulb. Human ES cells can also be directed into cardiomyocytes when co-cultured with visceral endoderm-like cells (END-2). These observations provide further scope to explore stem cell therapies, gene therapies and drug discovery. For compatible transplantation, ES may need to be derived with a range of HLA types or by nuclear transplantation or stem cell fusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call